October 4, 2016 By Douglas Bonderud 3 min read

The new release of Mirai malware source code unleashed a wave of IoT-based bots on the internet at large, giving motivated fraudsters the tools they need to ramp up attack speeds and deliver huge distributed denial-of-service (DDoS) throughput.

InfoWorld described it as a “plague,” and it may be right, since IoT security already struggles to keep pace with cybercriminals’ sophistication and speed. Is it possible to insulate corporate networks against this new wave of IoT insecurity?

Botnet Backlash

As noted by Infosecurity Magazine, Mirai is designed to leverage IoT by scanning the web for devices protected by factory-default passwords or hard-coded credentials, making them easy to compromise and infect. Once under the control of malicious actors, these devices are turned into a kind of massive botnet that can spam-DDoS websites and quickly shut them down.

The Krebs on Security site, for example, was recently targeted by a DDoS attack using the Mirai malware reaching 620 Gbps. Ars Technica also reported a 1 Tbps attack on French web host OVH.

In both cases, this traffic is orders of magnitude greater than what is required to knock out a website. It was made possible by a combination of the sheer number of IoT devices now connected to the internet and the lackluster security associated with most of these products.

That’s with Mirai still under the control of just a few attackers. Its source code was released last Friday, according to Infosecurity Magazine, after cybercriminals noticed the number of botnets they could pull was steadily dropping thanks to ISPs “cleaning up their act.” With Mirai now available to the public, however, the sheer number of attempts may undo much of the progress made in the wake of the Krebs and OVH attacks.

When Cameras and Printers Attack

According Ars Technica, IP cameras and video recorders are among the most frequently compromised IoT devices. It makes sense, since there are millions of these devices online, and most come with stock security credentials that are never changed.

The problem is that cameras, recorders, printers and wireless sensors don’t seem like threats because they’re on the fringes of corporate networks. Even if they’re compromised, they pose no local threat. With a few tweaks, however, they can be misappropriated as part of a larger, IP-enabled botnet that can conduct DDoS attacks anywhere, anytime.

Mitigating Mirai Malware

So how do IoT suppliers and manufacturers reverse the trend and stop Mirai in its tracks? First up are passwords. Device vendors need to make sure every IoT product comes with a unique password or force users to change the password once the device is installed.

Problems here include cost — since cheaper and faster is better for companies looking to tap into the IoT market — and the specter of user inconvenience. If forced to remember yet another password or make regular changes to device security, users may opt for a simpler alternative.

There’s also the problem of firmware. Even devices that start secure don’t stay that way forever. Still, companies often make it difficult to find firmware updates. Automatic updates, meanwhile, introduce the problem of man-in-the-middle (MitM) attacks if the process isn’t properly protected.

Solving IoT Insecurity

The Mirai malware release is merely a symptom of the larger problem of limited IoT security. Cybercriminals are able to create botnets because speed and convenience often trump security when it comes to IoT.

To solve the problem, security leaders must rethink the IoT industry on the whole. Rather than existing outside the corporate network, connected devices must be seen as the first line of defense: Whatever gets past the gates can be used to undermine the foundation.

More from

FYSA – Adobe Cold Fusion Path Traversal Vulnerability

2 min read - Summary Adobe has released a security bulletin (APSB24-107) addressing an arbitrary file system read vulnerability in ColdFusion, a web application server. The vulnerability, identified as CVE-2024-53961, can be exploited to read arbitrary files on the system, potentially leading to unauthorized access and data exposure. Threat Topography Threat Type: Arbitrary File System Read Industries Impacted: Technology, Software, and Web Development Geolocation: Global Environment Impact: Web servers running ColdFusion 2021 and 2023 are vulnerable Overview X-Force Incident Command is monitoring the disclosure…

What does resilience in the cyber world look like in 2025 and beyond?

6 min read -  Back in 2021, we ran a series called “A Journey in Organizational Resilience.” These issues of this series remain applicable today and, in many cases, are more important than ever, given the rapid changes of the last few years. But the term "resilience" can be difficult to define, and when we define it, we may limit its scope, missing the big picture.In the age of generative artificial intelligence (gen AI), the prevalence of breach data from infostealers and the near-constant…

Airplane cybersecurity: Past, present, future

4 min read - With most aviation processes now digitized, airlines and the aviation industry as a whole must prioritize cybersecurity. If a cyber criminal launches an attack that affects a system involved in aviation — either an airline’s system or a third-party vendor — the entire process, from safety to passenger comfort, may be impacted.To improve security in the aviation industry, the FAA recently proposed new rules to tighten cybersecurity on airplanes. These rules would “protect the equipment, systems and networks of transport…

Topic updates

Get email updates and stay ahead of the latest threats to the security landscape, thought leadership and research.
Subscribe today